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PROBABILITY LIMIT THEOREMS AND T™E COLVERGENCE OF
VINITE DIFFERENCE APPROXIMATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Harold J, Kushner

Introduction

The Equationr to be Considered

This paper is concerned with the application of -:ertain conver.
gence theorems (o probability measures on spaces of continuous
functions) to a problem in thy convergence of finite difference
approximations to partial differential equations.

let G be a bounded open set ia R’ (Buclidean r-space) with
e continuous boundary &3, and let k(*) and @(¢) be non-negative
continuous functions on R' (and, occasionally, when the argument ¢

1

appears, on a” ). Consider the possitly degenerate elliptic or

parabolic equations of either of the forms (1) - (5).

> 3

P 1?.1.“ (x)u;t; + % ‘1"‘"8;
LV(x) = k(x), V(%) = o(X) (1)
LV(x) - pV(x) = k(x), V() = 9() (2)
Vt(z,t) + V(x,t) = k(x,t), V(x,t) = 9(x,T) (3)

v(2,t) = 9(,t), t < T.



Note that ‘time’ flows backward in (3); o simple transformation
converts it into the more standard problem., One of the main results
of the paper concerns the convergence J>f finite difference approxima.

tionz to (1) - (3), a2 the difference interval goes to zerc,

Probabilistic Interpretation

(1) - (3) can be given a probabilistic but physical interpretation.
In fact, this 'physical’' probebilistic interpretation will be used very
heavily in the interpretation of the finite difference equations, in
the motivation of the development, and in the convergence proofs. Let
z, be & vector of independent Wiener processes (thus lzt:;.. - It),
and let x, be the solution to the Ito stochastic differential equa-
tion (Dood [1], Chapter 6)

ax, = t(xt)dt . '('t)d’t’ )

vhere f(°) and o(:) are bounded by a real number K and satisfy
e uniform Lipschitz condition; e.g.,

I£(y) - £'x)| s K|y-x|.

x, can be defined to be continuous w.p.l. and satisfy the
roperties’ (Doud [1])

;o(t) is of the order of ¢t and o(b)/h°+0 as h =C.




K max nlx..; |?
tzs20

ol * o(t)

I(xh-xolxo) - r(xo)h + o(h)

cov (x,-x |x)) = a(xy)e* (x )h + o(h).

Define the matrix a(x) by 2.(x) = o(x)o'(x) » (o‘J(x)) and

let 1 be the random time at wvhich the diffusion 't first reeches

the boundary &3, for x_ = x ¢ G, and suppose that EY < Then,

0
vith l’ denoting the expectation given the initial condition

x. = x, under certain conditions (1) - (3) have the unique solutions

0
(la) - (’a), resp. (Dynkin [2], Chapter 13).

<

V(x) = B ‘I) kic )as + Eo(x) (1a)

V(x) = E, (!:.”‘k(x.)do + lxo’b'o(:') (2a)
™

V(x,t) = 'z,t 'f' k(x.,o)dl + l:’t’(l,n,",m‘l’) (3a)

vhere we define t N s = min (t;l),mtn()n), ':,t implies that
X, = X,

8ince we allow !n“(:)) to be degenerate, by letting t bde
the r + 1 st coordinate o x, (3) “ecomes a special case of (1).
Then the cylinder G x [U,T) = G replaces G in (1) and TN %, the
finite escape time from O replaces t in (1). Thus, we will not



treat (5) separately

The conditions under which (1) - (3) are knowu to have solutions
wvhich are amooth enough to satisfy (1) - (%) (strong soluticna) ere
quite restricted, 1in particular, full ellipticity of £ s generally
required, Yet, in rather typlcal aituations, this condition is
violated, This occurs almost all the time in stochastic control
theory, where, in fact, one uses (1) - (3) to represent the cost
functions (la) - (%a), and hopes to solve (1) - (5) in order to ob-
tain (1a) - (3a). PFor a particular case, consider the formal

differential equation

(r) (r-1)

ylee

deeed coy - of O)

vhere {§ 4s 'white Gaussian noise', Putting (9) into the form (4)

yields
ax, S 5 3= 0
T Lhs T B T RILLSER B ot b B
dx -C . . -C :
r 0o n-l 3
cnda“-o,mhu imjurpy,

Of course (1) - (3) may be derived from other than stochastic

considerations. Yet, still, unless we know that there is & solution
to (1) - (3) with suitably smooth derivatives, and have an appropriate
discrete maximm principle availsble, the usual methods (see, ¢.g. [3))




for proving convergence of the finite difference approximations, as
the difference interval converges, do not apply. Nevertheless, for
each difference interval, the finite difference equations spproximat.
ing (1) - (3) may still have unique solutions, and it is meaningful
to ask whether the solutions converge to (la) - (Ja), as the interval
decreases to zero,

This problem will be treated by a probabilistic method, We
also note that even if £ {s the laplacion, classical proofs of con-
vergence cannot be used if G has corners, since Lhen the secund
derivatives may not be uniformly continuous in G.

Section 2 describes the finite difference equations *> be used,
and gives a useful probabilistic interpretation of them. The method
of proof is described, and main theorems stated in Section 3.

The theorems use some general conditions wvhich are quite common
in applications. This is illustrated in the typical (degenerste
elliptic) example of Section 4. Proofs of the theorems appear in the
appendix, The treatment of the discounted problem (2) - (2a) is
similar to that of (1) - (la) and will not be given.

2. Pinite Difference Buum and Markov Chains

Deminclogy

For equation (1) let the difference interval be h (in any
coordinate direction’) and let o be the unit vector in the 1*®

m
This is for convience in development. The difference interval can

certainly depend on the direction. .




¢

coordinate dircction, Suppose that G s strictly contained in a
hypercube W with sides [-A,A). Define the set of nodes Ky 1in
k' by K = ((a,h,..0,nh), n, ranging over 0, 1, 12,...).
Define Gh - 0n K:.

In order to expose the method, and not get involved with the
rathcr long finite difference equationa arising vhen mixed sccond

derivatives occur, we let &, = 0 for | fJ. There is mo trouble

J
in extending the method to the more general case,

Yorm of the rjxnua Difference mtiml

The following {inite difference approximations will be used.

V(xn‘h) - V(x)
Yx ~é ’ (6a)
i V(x) - V(x-o‘h)

vhere the upper term of (6a) is used if t‘(x) 2 0, and the lower
otheawise. (This usage will be carried throughout, upper entries in
( ) slways used if f, 20, ete.)

Vg, () = [Vixsogh) - 2¥(x) o V(x-e,h))/n%, (6v)
The reason for the choice (6a) will appear shortly.

1r Vb(x) denotes the solution to the finite difference equa-
tions, then using (6) for xe0, (1) yields




f v, (x¢e.h) - vh(x)

0 =), -‘;’-(V (xt¢ %) - ZN (x) + ¥ (noh))o) 5.‘. h
Y | vh(x) -V (x-eh)
+ k(x)
or, by collevting terms
(x) V (x+e h) h| t‘l ‘8, V (x-e h) 8y an)
X) w= b
" 1 l;,!ﬂ 8, : ﬁl ’ blfll + 8,

vhere Qh(:) w27 L A r‘l. Define Vh(') w@(x) for x ¢ ( - 0.
i i
Rewrite (1b) as (with the obvious identification of terms)

Vh(x) " }‘: 'h(’ .oah)ph(x,:n‘h) + }‘Z vh(":th)’u(""'tb) + ph(x)k(;)

(1¢)
V(x) = 9(x), for x e l; - %.

Now the reason for the choice (6a) will beccme clear, Note that
since the p,(x,y) 3 O and sum to at most unity, end can be defined
for all x,y ¢ Ry, they can be considered to be transition probabilities
for a Markov chain on the grid Ry, This is the setup used in (Kushner,
Kleinman (4)), whore problems concerning the computation of solutions

of non-linear versions of (lc) were considered,
Denote the sequence of random variables of this Murkov chain by
(). mve PR, = ¢} + be,) = p (x,x0e,h), etc. Define




M, = inf (ke !: / “u"

Now we procoed Lo Investigate the behavior as h - 0, :hwwcc‘
'("h < ‘h < ®w, The solution to (lc) can be written as (h)

.h.l

Vp(x) = B ) “n“u)"“u) + K v(! )e (14)

"n

3. The Method

The probabilistic interpretation (la) of (1), and the probabilis.
tic interpretation (1d4) of the finite difference system (lc), as wel)
as Lhe similarity of the form (1d) to a Reimann sum approximation to
(1a), suggest that onr could treat the convergence problem as & problem
in the convergence (in & suitable sense) Of the measures associated
vith (1) to that 0 (x,). In fact this procedure is quite fruit.
ful, and much of the sequel is devoted to setting the problem up so
s to usa the follow.ng theorem of Gikhman and Skorckhod (3],

Chapter 9. (Actually, Theorem A is a composite of several theorems
of [5), Chapter 9, Sections 1,2.)

Theorem A, let C[O,T) m 0 be the set of R’ valued continuous
functions on the interval [0,7). Let ¥'(t), y(t), t ¢ [0,7) be

continuous processes with Eﬂu in the ‘Mcg space f.

m
This is not restrictive in applications (see [4])). In M the con-
dition is implied by condition (11) of Theorem 3 which is also natural




Ya and p be the mwasures Inluced on O by the processes y”(o)

wd y(e), resp. let (for 0 s ¢ £ t* 5 T)

e TR e ( s () - ") 2 e>00 =0 (o)
640 n (A B

for any ¢ > 0. lﬂ. the finite dimenszionsl distributions of

(y"(t)) converge to these of y(t). let P(:) le a bounded and

continuous (v.p.l,) functional on the topological spacn 0, Then

2 (y"(+)) = 2r(y(+)).

In the Appendix and section on convergence, Theorem A is ex-
nloited and extended to yield a solution (Theorem 3) to our problem.
The example illustrates that the conditions of Theorem 3 are quite
natural for a very large class of problems.

In order to exploit Theorem A, the procecss u:) must be re-
lated to a suitable continuous time process ((h(t)).

By & comparison of (14) and (1a), we note that the 'discrete
time' cost rate is p'(z) times the continsous time cost., In an
intultive sense, one step of the discrete process {, should teke
a.(g:) units of real time. Thus the following definition is natwral.




10

Pefine the time sequence (!.:) by. (scm-timons argment. of finctions

are deleted for simplicity)

ol o PN o e

to-'.

¥y O

Define a process th(t) by

h(h h

at the times (t]), and for t, % t <t , by the linear interpolation

by ,bS2h _h
LRGN (t-t) et %) .
laeh s

Thus the continuous process gh(t) is piecewise linear and changes

slope at the random break points "’k) only,

The use of ("(t) 1s a natural wey of relating (t;) and x,.
Tbis can be ceen fium the last part of the following remark and from
the calculations (8), which indicate that the drift snd diffusion co-

efficirats of gh(t) converge to those of the x,  process as t -0,

;__
We use "h“:)’ &: and &"(g:) interchangeadbly. Also, scmetimes
the arguments of t‘ and 84 are omitted,




11

Remark, Yo {llustrate the random time scallng, contider the

scalar example vhere

dx » x4t ¢+ odz

2
7 Vo - XV, ¢+ k(x) =0,  V(A) = V(-A) w O,

For x = nh, n > 0, the discrete equations reduce to

o® /2¢xh )02(2 h
v, ( .v(.h)l_;é?_'_-l Vv, (x+h X (X Yo
hx) n (% o + ¥, (xe + (x“xh

o +xh

= V) (x=h)p, (x,x-h) + V, (x+h)p, (x,x+h) +p, (x)k(>).

A simple discrete time (continuous state space) approximation

to x, is given by

X=X -Xae (% (ne1)a %na)? (M

and q!r-xt]’-oo s n e if nA remains fixed at t. However,
while the time step, A, is constant, the one step jumps are unbovnded:
as ih increases the average step size increases, etc. If we are to
bound the step size at each n (as we do with the process (t:]

approxis (ting xt),nMuctActﬂnth.A.tmhn in some
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way wvhich ‘epends on the only known variable ;n.

This 12 clearly seen in the degenerae caze o0~ 0, Then if

xyo,

b b
) “ 3T~ TveToeTwT

vhich is exactly the time which it takes a particle to move the
standard distance h, if the velocity were fixed at x during the
time of movement,

Equations (2) and (3) can be treated rimilarly to (1), Por ex-
ample, applying (6) to (2), collecting terms, and dividing by the
coefficient of V(x) ylelds, for x ¢ G,

V.(x¢e, ) | h|f,] + Vv, (x-e,,) n
h ih i i1 h ih i1
W) » L g ' o, ‘ ‘f'n',,',;ra-’ bl | +.“l (2v)
+ k'x)he/%h(x)
vhere

%h") " 2{..“ + hZ". It‘I + hep.
(2b) can be rewritten as

Vh(x) o 'ph""z‘: vh(”"th)’h("’”'ih)

(2¢)
+ 2“. vy (x-¢,,)p, (x,x-0,,) + g, (x)k(x)),



X
wvith boundary values dofincd as

r

V(x) - ¢(x), x ¢ "’, - Oho
vhore

() = (1o 20 ) = (1 - po(x) + O(n))
Ym. - W - fp o

The solution to (2¢) is the discounted cost

-l

v o) =k T (Tlre a™xa™ (")*nlf' Mw® ). (29)
h ;) - N ’”‘o ‘”ofm' ‘1 ‘ﬂ ph ‘n x VLT‘”‘ ‘n !'h .

The convergence of (24) to (2a) can be discussed along the same lines
as for equation (1), but will not de developed here,

A Canonical Form Por (g:).

th

Write the 3*" component of ¢} as (1 . with ] = g, the
’

transition probabilities p(x,x-go‘h) given %y (1b) yield

W2
Aty -tlty = 0= T = (020 (8a)

The average change in gh(t) in time &h(l) is merely the mecan
drift of the diffusion (W) times the time interval p (1) = &),

a further check of the naturalness of our time scaling.
S8ince the procens g: moves in only one direction at a time,




Lk

h h
] -1 ] can be non-zero for only one §, Thus the off disgonal
[hen, 17,1 ‘

elements of the first matrix on the right of

h h h
B(e,  -t)(e =0)' e« 1)
h
Cov [ty -tley = ¢) » Bl Ko .

a&h(!)

B, 00 = OB, -0) () = 1)

“ T(0) = 0 4 ()

at' (1)
w o) (t)o} (¢)
are zero, Mmus
Ty, 13 (®) = 4" ()F, (1) = 00%)  for 14 (8v)

while, for 1« J (and using 2a,, = of)

TR CEA R (M
- oy + n{lt,| - [£hla" (1)) (8c)

-é+th

As a further check on the scaling of §(t), observe the
connection between the 'infinitesimal' properties of the (i) and

(‘t' processes.




J '
B(L), -0 10) - x) F, (xy-x)

lim « l1lim -
h -0 A (x) b+ 0 5
h
cov (1), ,~t,ltp = x) Cov (x,-x)
1" ] Lo l‘- _3_ .
h -0 AL (x) -0

h h h
Next, we may write (. o2 (recall at, - ﬂ((.))

h

= e feha + ph

[3

h b pphy,h
P = [tyan-ty - FlL)ay ), B, = o.

let J <k. Then "’P;"J"Ju’lul » 0. implies that “’J’ is an

orthogonal sequence,

We next give a convenient representation for the

‘driving temm' Bk’

There is an orthogonal Jequence (a{) satisfying
qﬁ"o}ﬂq‘k) -0 and
Blayagl gy« oesty) = 14ty

By o) Ty (e (*)
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. |
T™his 1s obvious if )‘h (!u) exigts, since then define

. -1/2

o = A Y, . .

Next, letting )'h (Q:) not exist, we show (*) wder (C1) . (C2)
of Theorem 1, and for all small h, Wy (Bb.c) and (Cl) - (C2),
h“‘“)l ¢ ',rphﬂ)l;‘(t) for h small ant all ¢, m«.‘, from
(8b-c) and (Cl) - (C2), we conclude that semidefinitencas of Xh(Q:)
requires that some diagonal clement be zero, Thus, u“ﬂ:) " r, (g:)
for some 4, But then, the 1*" rov and column of I, are zero, and
80 is nk,i'

Then by reordering the states (at g:) and repeating the

~
argumcnt, we suppose that f_u (P cees. ) =0, B =
Sy . k ® Py 2000005, » Py

(ﬁh’.‘l,n.,ﬂk’r) has 11M"1’ ’mmmt components and that

) atpB, (00) = B(BEI0], .00, t])

0 0

(tg) =
R B, (t))

Pinally, define o = (an,ay)', where & = n;"’u:). Let
(uz{] be an independent s-vector Gaussian sequence with mean zero anc
unit variance, Define Q . f:.: Q Thus the generality of (*)
is proved, :
Next, mote that from (3, = b + ALY, (1) + thm“:)‘{

li‘; is uniformly dominated by (say) 1/2 of its diagonal matrix, for
small h,
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we also have

hy h h
"Gi'mvooo’ni_l'!()] = 0

h, hy, h h _h h
Koy (@) Jogy oo p1ato) = 14

Conve rgence Theorems

Let measures . and u  (on the topological space 0 « C(O,T)

h

correspond Lo processes th(t) and x., resp, t ¢ [0,T]. The con-

t
ditions (Cl) - (Ch) used in the sequel are g ite natural for s large

class of problems, and are illustrated in thc example,

Theorem 1, Assume

(c) f,(t) snd o, (t) are uniformly bounded and

satisfy m uniform Lipschitz condition, (Recall a = go',)
(c?) let 8 cequal h or ne, For real positive

K8, ¥ 470 ¥ K8,

(c3) let a(t), have the form

et P Lol (1) = o, (t)e" (1)
a(g) = s O - " " ’
0 Iy(t)) 0 oy(t) % "
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o |
vhere ).U (1) hes uaniformly bounlel terma,
rm—— P,

Then the finite dimcnsicnal distributions of the proceas Qh(t)

converye Lo Lhoge of the proceas xo and for 0« % st s 7, ad

1im TIm Pl sup lth(t') . !h(t")l 2 ¢) =0, (9)
L-+0h =0 AR L

Kemark, (C2) mecans the fcllowing, Either we allow

}".u“(t) e co: 0 for some real ‘0’ in vhich casc °b . h?, or we

allow !1‘..“(9) #» 0 and )“. |£,] # ¢, >0, in which case 8, = h. Thus

2 cases arc considered - one casc in vhich there is always some
diffusion somewhere, and one cuse in which there is no diffusion -

but where the velocity of x, is never q. In the intermediate case

t
the ratio

max at" ()

"L""'l_-

l:ﬂ& (¢)

may be infinite, invalidating our proofs. The first case is one of
great importance.
Yor future reference, ve note that (Cl) - (C2) and (8b-c)

lumhcmuc,wnmmwstmmorcm- i
tinuity of the relevant distributions for the process Xy o
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Imply’ (for same real K)
/0,

() ¥ Je (™) - o0t™17e s xmi
- h "k K bh

‘lK?/b

h

h h 248 r
o) T ' -t s K
(©) kO '»x,: u,ll

for any >0 and | =~ 1.0.0,'0

corollu-‘ 1, Assume (C1) - (C3). let P(¢) be s bounded con-

tinuous function on C[0,T] w.p.l. (relative to ). ‘mm“(vlth

PEEEEN

B F()) = p p(x (e

Theorem 2 uses condition (C6). (C6). Thew is an ho >0 so that
for h<h, G satisfies Let 4 = (s,D) be & line connecting two
adjacent (along coordinate directions) points (a,d) of the grid I;- 1r
@ and b are doth in G, then so is the line J connecting them.

(C6) cali be weakened in many ways - but there seems 1'ttle point in
complicating the condition here, It is certainly satisfied (for any

m

Yor a vector x, lzl’-!ilxi. For a matrix o, Icl’-%.“, vhere
(-44) = & = 0’0, Recall that o,(t)of(t) m Iy (t). -
“x, is the expectation given x = x,




ho) fur convex O, (cf_’.) 2 used Lo sasurc Lhat e Firstl passag:

h
timo: from G, of both (h(t) and | ere appruximately the same

.
time, l,e,, If Qh(l) leaves the O between the nth and n o 18%
steps of Q:, then llb “ fe It §8 used to avoid the possibiliny
fllustrated by Vigure 3 (for all small h), vhere If the discrete
process Q: Jumpa from & to b at time n, it hae not actually left

G, but the interpolated process Qh(v.) leaves right after time n,

Theorem 2, Assume (Cl) - (C3) and (06), let kie) _u_xﬁ 9(s) be uni.
(=& L B30 e ——— —— Pt i

formly continuous and bounded on some open set containing T=0+ &,

let 1t denote the first (randcm) time that the process X, leaves

6 (v« inf (¢! Xy f G)), and suppose that TN v = min (T,7) ia

ccnt.!nuoun‘ Vepels (:l!n_g VePoloe :_Mt"lont is relative ‘v W) on c[(o,r).

Denote %, = inf (t3 "(t) £ 3). Ihen
™ ™
B/ k(x)s« lim B [ (2" (s) Vs
0 h-0 %0
(10a)
-1
By (oD
. nl-?o E, :go k(g ) (¢))
h h
« lim - lin . 100
B9 (xy,) u-oo."'“ (7)) u-oo"'“'u) (100)

W
TN < is a function of the path x,




*)
£l

Theorem 5, Assume Lhe conditions of Theorem 2, md let, for
0 ee Ehaa

h .
Pu(!u leaves Gh at least once by time to) » “O >0 (11)

vhere % is independent of x ¢ G, and h >0, for small h, Then

the Vh(x) glven by (14) converge to (1) a3 h 0, uniformly in x

in G, 1.e,, the solutions of the finite difference equations (1b,c)

converge %o the weak soluiion (la) of the equation (1), as h -0,

The arguments of the example yleld Theorem U, which generalizes
Theorem 5 and does not contain (11) explicitly,

Vo Jumple

The conditions imposed in Theorems 1.3 are rather natural for a
large class of problems, and in order to illustrate this, their
validity will be checked for a 2.dimensional prodblem, It shruld be
clear that the example is typical of a large class. Although the
basic problem arose in numerical analysis, the approach taken here
as well as the conditiuns, are probabilistic. Hence, the checking of
the conditions involves probabilistic calculations on the underlying
processes., let |



0o o°
ax, - fl(:,‘,)clt a - : '7 - ou'

ax, = r?(x)dt S P

(12)

vhers v s 8 conclant amd the . satiafy (c1). let r,(x) = x,

in T. We seck to solve

ZV(x) + k(x) » 0 In ¢

(13)
V(x) » ¢(x) on &

vhere k(*) and @(¢) are continious and bounded,

2
l-;— -§=¢ tl(x)%ora(r)&a—a,
2

*ud u 18 ‘he dox
G = ix$ |x‘| sA).

Thus (C6) holds for all hy > 0.

Note that £ Is degencrate and G has corners; hence,
classical theory cannot be used (o solve the convergence problem for
(13) as h =0,

Using (6) gives




23

V), (x+¢ h) ’ulrli v, (x-en) | © ‘

v, (x) = -—-1;-
% G gt %) nl!’ |
Vv, (x+e,h) v2/2 + nr,| v (x c h) v2/? P
. e 2 ‘ . k()n
aoa i ol IEPRN AL <o o

for x on G, the grid in G on ilhe grid n; -ch outside of

hl
G, define

Vh(x) » @(x) for X ¢ R: - G,

We need only show that TN ¢ is continuoua v.p.l. (relative
to u) on C[O,T), and that (11) holds, rsr.t, ve prove the con-
tinuity condition, Let @ be a generic point of C[0,T] = O, Thus
ve may write Xe) the value of the process at time t, more explicitly
s x, (o).

In fact, TN v 4s not continuous everywvhere on Q. To seec why,
let y, be a scalar process and define T(w) = inf (t: yt(o) 3 A).
Consider the path yt(u) of Pigure 1. For any continuous sequence
“n"” for which ’t(‘”) - ¢n(t) 1 y{(o) 'unimmu on [0,T), we
have

inf (t: .n(t)lljﬂl‘- T.




Thua (T N 1)() 12 not continuous at the @ corresponding to the
path yt(m) of Yigure 1, However, it s continuous at o',

Returning to the problem (12), (13) ref.r to Plgure 2, It is
clear that if tangencies at the boundary occur only w,.p, zero, then,
by virtue of the continuity of x‘(w) v.p.le, (TN %)(w) will Ve
continuvous w,p,1, This will now be shown to be the case,

We observe that

(a) for Xoe >0, X, must increase (as time incresses)

since dxl - xadt. in G. Hence, w.p.l, points on the boundary
section L, (Figure 2) are not accessidle, B8imilarly for L’.

(v) Also, since X, >0 on L, the path cannot be
tangent on Ll’ and similarly for L‘,.

(c) Owing to the dominant effects of the diffusion on
movement in the vertical direction, the p:mm on 15 and l‘6 are
regular in the sense of Dynkin [2]); {.e.

II= P_(x_ ¢ &,

[ 031’ :”“B forall 83 ¢>0) =0 (1)
-

(4) P,(i-?)-ol
(¢) P(x =q, or q)) =0.
In fact, (a) - (e) imply the existence of ct(o) >0 w.p.l.
8o that, for t(w) § T, T(») + ey(@) § T w.p.1l. (relative to
(w: T(w) 5 T)) and




distance (x“w)"?(w),o) ’ '1(‘”)'

(f) 8ince x, is continuous, w.p,l,, therc are

.’('U) P 0, 'opoln, Ch(w) >0 V.P.l. 80 that
distance (x, (w)? exterior of T) z ¢, (),
3

for all ¢t 5 t(w) 1f =<(w) s T.

Now, denote by N, the sum of the exceptional null sets in

0

(a) - (f). Lot we - N

C(0,T) satisfy (as n =)

and t(w) s T, Let ((h(t.)) in

sup |g (t) - x, ()] 0.
oster D .
Let ¢ > 0 be arbitrary. Then by (a) - (f), for large n, the first
time ‘n(t.) leaves G must be within ¢ of <(w). This proves the
continuity w.p.l. of T(@) N T= (v N T)(w).
Only (11) remains to be proved. Let N = t /Kh°, for any

t. >0, and define

0

ll‘(g) = number of positive steps of g: s kSN
’

M_(t) = nusber of negative steps of ¢! ,, k § N.
’

A sufficient condition for (1l1) is




0

qh(x) r‘m. (¢) - u_(g) » ;‘i).‘ “0 > U, (19)
Yor some real K, we have the bounds,

h

1
ke1,2 b2 " B) gt KN

z-xhil“.

Let (u:) be a Markov process on (0,11,12,,,,) with transition

probability

Define Nt(u) analogously to “t“)' Then

qb(x) > qh,u(") » P(u‘(u) - ll.(.u) 2 2A/n).

The mean value of u:ﬂ - u: is -2Xh, and its variance is 1 - (2&!3)2.

Now

M, (u)-M_ (u)-N(-2xh)

(x) = S :
g it Jv £ E 5 - (o ’!

The left term in brackets converges in distribution to the

normal zero mean and unity variance random variahle, and the right
hand term in the brackets is strictly less than scme l,<- for

small h, Thus, for all small h




o1

(x) = (x) 2 e [ exp - £ ¥4
SR R I

which proves (11).

The crucinl step in the proof of (11), the bounding of the

drift in onc direction, can casily be generalized, In fact, (11)
holds if

ol
wvhere )‘.o has uniformly bounded terms in G.

In fact, thc example can be generalized to yield (The proof is

8 cambination of the arguments of the example and of Theorem 35 and
is omitted,)

Theorem b, Assume (C1) - (C3) and (C6). lLet & = B, + B, where
=== —_— —_—

points on B, are regular for the process x, in the sense (1h)_o£

Dynkin [2], and on B, are inaccessable w.p.l. for the process x,.

If k() and @(.) sre continuous on s neighborhood containing 3T,
then Vh(x) -+ V(x). |




AVIvIDIX

The proof of Theorem 1 will be developed via a serice of lemmar,

The symbola K or K, arc used for any constant, values may change

|
from usage Lo usage,

. h
lemma 1, Assume (Cl) . (C5). Define the process (v;.) with

initial condition v;g - ‘O - Qg and

":u . ": " “":)A": . °(":)°{'

h h,h
vhere At = At “u)‘ et N« ’/“2%

h b2
sup Eln. - ¢, .| =0 (A1)
N2kz0 LR

88 h -0, Define qh(t.) as the linear interpolation of q:, d.e.,

for t.:lt.<t.:d,

(t-t3) (tp,,-t)
(L) = A . — -
e "N

Then if the multidimensional distributions of the process 17" (t)

bave limits, #0 do those corresponding to the limit of the "(t)

process and they are the same, (Note that the \: and g: equations
differ only in that }::/2 1s replaced by its limit o.)

Proof, Let ’t’ak be the minimal g-algebra over which
& ———— ’
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(w:, i s k) s mensurable, Por sisplicityy of v:ttlmf+ ve drop Lhe

index h on vh !:‘, A!.:l, m:‘, V’..k. ete, whenever no confusion will arise,

S iy

Both ¢ and ., 85’ are _C‘u measursble, and we use the

notation A, - At(!u). Yrom

el - ‘uol ~ '& - ‘. ¢ “'"i.) - r“k)]Ml ¢ (0("“) - ‘h(!k)k\’

we can write

Moot ® By = tl” = 04 ¢ 2B - )00 - £0,))%)
v Ble(n) - £(0)1 %82 ¢ ogle(n) - o1 )1 (0(n) - o(b,) )y
¢ B({alo(n,) - o(t,))'[0(t)) - o (t,))a)

+ Bpfo(e,) - o (1)) 00(8)) - o (¢ M
sA+B+C+D+ kR,

Using the Lipschitz condition (Cl), wnd (C2), yields, for scme
real K,

As u'(hauab)
» s ot

ZT XN
Io| s k&M, + K& la(e,) - o, (t,)I°
2| s x8,lo(t,) - o (t,)I%




Thus

? -
Mooy * M 0K 8K 80) + KoKla(e,) - o /0 )70,

N
M, & K, (1oxgd ) ale,) - o,,ﬂ,)l’a,,-ﬁolaa PEENTR W

Then (Al) follows from (Ch) and

/%0

(lolsbb)' - (10[66.‘) 5 exp K61'/K2.

Pinally, since the number of terms of the process u:] vhich
effect the gh(\.) process on [0,T] is at most r/I.‘,bh and at
least T/K/8,, and since M —0 uniformly as h -0, for k § N,
ve have

B (e) - "(e))2 o0
on [O,T], as Lk -0, Q.E.D.

Lemma 2, Assume (C1) - (C3). let N = T/K8, n= t/K@.
Then for n s N,



h2 e 1
kmax 10017 s k(efeg)®)e"

nrk-0

h k,?

h,?
nekeO

where K 18 a real mmber, The same result holds for the (r,:)

EOCC'GD.

Proof, Again drop the index h on (?, '.':, At:', m:, ete,, vhere

convenient, Then
beor " bt At By
K K
A ® § £ley)aty, B, = g‘ %, (¢ oy«

By (8b.c), the o, also satisfy s uniform Lipschitz condition (also
uniform in h for small h) and are (bounded unifomly in h for

small h), Write Y = max [git.| and - EY. .
S " - 5,

Now

lg,yl? 8 x(Ueg)? + 1802 + 117 (A2)

s ! : 2
max |A,| tglt(e,)&,l s !§ (1+1¢,17)8,. (A3)




}‘:

y;.rthrr. hl fe & martinganle anl (bnng. l],' Chnartop ()

X max |0 )7

2 B 2
: n:lnhl s KK ) Ioh(!‘)l LY
n:k+0 0

E

- (AN)
. 2

£ K (“lt,l LN
0

Cumbining (A2) - (Ah), taking expectationa, and replacing l‘l!,l? vy

the majorant N’, ylelds

n
ey * Wy * Kintyontiel w8,), )

vhich is bounded above by the cypression given in the lemma for

o max “:'20
nt 12100

The proof of the other statements of the lemma are similar and
-

are omitted, Q.E.D,
¥We next compare nh(t) to a process whose distridbutions are

easier to relate to those of a‘.

Divide [0,T) into intervals with Mpoh;u O,A,zq...,lAA
1

vhere A >> K8 . Recall the definition t: - .I::om'.‘. Define
.:-o and the (random) integer n: vy n:-n: (n: t.:!w.

Define the sets of integers

¢1-(r:t:st b

= 1

g * "
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A‘fnln' ve drop Lthe Indox h where convenlent, Ten !:luﬂng h‘ for
n?, etc,)
A - "l&hsta . t”’ sno.n,bb
and
}‘. &r . ‘ - 'n .
rel, w1 M
Cov J o = I%(t -t ), (A6)
re1, * Piel M

Let ;0 - "0’ and for each h define ths process

v Kt 16 Lo e L o
,i‘Ol rt).‘!‘. : ’(‘k).gx" 10 “7)

Lemaa 3, (Again, cmit in’¢) n wrie on e lent), Assume
s . LEE kT —
(1) - (c3). Then

bu.o i:up B3, - -x!f' Ny (A8)
s

ka9 :
Let ¥(t) be the linearly ln_t__czhud mun with y(t ) - y‘

Then the multidimensional distridbutions of 19 (t) tend (__ h -~ 0)

to the limit (2 h -0, then A-oo)ott.houtwﬂuﬂm y(t).




5l

-

Procf, let C. - y‘ . “D e Then
| 3

" -C + ) l‘(;)-f(';)]l\l " ) (OG)-O(ﬁ)b.
k¢l k “l”x[ [ 3 8 a “Iuol k [

zlcu”l?au‘ﬂnnkogonoc

where (unindexed sums are over s ¢ I )

A=l (tG.) - f(n.)w,lz
a/xgs,
sE(Y a)E L
8-0
”?°" 12 12
s KA. LA (3";"‘“. ’ ""n.u"'n. )ah

s K(a)°W + K,

1£(y,) - Fhy o) 12,

vhere Lemma 2 13 used in the last step.

B B|E (0Gy) - o)) a,|?
« EZjoGy) - aln)|%a,

'4/;,%“|~ 12+ 8ln, .0 |2
2 -~ ’x"‘nk - "n.n '.“t )8,

* ‘“—‘x B mz,

vhere, again, Lemma 2 is ured in the last step,




¢~ B2l (r(3,) - f(n))ar

lel = k)PP (G - etn e

ML,b AN
l/ h Z h = l/:'
Dt. hh .io "yk uqk| Qh]

. ry;/:'(uk/s’ ‘ m’)'/?’
s K+ /?,

vhere the second step used the bound
-~ 2 -~ o 4
BlYp-ngnl” ¢ KBIY, -n | ¢ K|y, o |
k o«& k"n. unk"nk
um!om
and wvhere the last step used a bound D(.(ll for X 5 T/A which

is derivable Uy the method of either Lemmas 1 or 2,
Thus

ltllk(l-osz)-tK,A’/a, My = O,

vhich implins

PP

M s g(r)Al"?, ks T/A (A9)

vhere K, depends only on T and the constents in (C1) . (c2).
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(A8) and tae last statement of the lemma follow fram (A9) and

lesern 2, Q.E.D,

lesman by, Assume (C1l) to (C3). Define
[ o ] e -—— -— —— -

where b"k 'WA \nwro z, is a vector Wiencr process

(»... t';. « It), Then the dhtrlbut!om of (;l) converge to those of

(v,) 82 h=0 (for fix.d A4).

Proof, A proof can be casily modelled along the lines of the
proof of part of Theorem 1, p, 5% [5], and we only sketch the out-

line, Write o = (‘} ) , wnere @ has the dimension of the
% 4

co(:) in (C3). 8ince o(x) = ‘ )}onlx the sequence (“\’
0 x

enters into the definition of the sequence (;k) , and we can write

;”1 - ;k + r(;k) (tnk-t 'cnk) + ‘G (m)

:(x) -

0o (%)




3

anl
u. (24 ). ;.o
nll.‘l
Let % have dimenslion ro. Suppose that, for all uniforuly
bounded (by, say, K) ro-Vcctora “‘k,' ve have

lim K exp ) iNu = -1)',°A. All
Jm e Loy, - exp - 3 E (AL2)

Then the multidimensional distributions of (uk) converge to those
of ((Zypn-®yp))e

Gikhman and Skorokhod used the property (All) to prove (in a
relatively straightforward way) that the multidimensional distribu.
tions of (;k) converge to those of (’k]' (8ee Lemmas 2.3, p. 599-
601 [5], and the proof concerning convergence in distribution of
(ng(7)) to (ng(%,)) on p. 601-602.) Of course, in (3], the n7
is scalar process (the vector extension is straightforward) and the
coefficient of f(y.) 1s A. But, since |t -t | = A uniformly

x : Pred “x

in all variables as h - 0, the proof can easily be modified to
account for this minor difference,

Thus wve will only prove (All), Pirst, let us introduce some
notation, Let T/A= m, and divide each interval [iA,1A+A)
(1=0,...,m-1) into subintervals of length b, where b -0 as
h~+0 and b /8 -+=, Define thc 2ets of indices (subsets of I,) I,




I, % (a3t e((2-1)as (r-2)b, (£-1)A+ 1b )

ir

‘ - l’...’.. 1.0.0.~bh0 lx’rl"‘

u, *» J o
ir a
lCl‘r

th
Lot u"’1 and m." be the 1™ coamponents, resp,, vhere
fwr-r,+1,.0.,r (the last r_  c-mponents), (Note that

0
u 'Y.u o)
s - ir

0

Next, we show lim 8 1-0 vhere
h-0

o,

=
248
8,1 " Ex ,2‘1'“::,1' (n12)

for same 1> 8> 0, In fact,

. X %; re "'n-,a'e“
and
lug, %0 a | T o ™ ® nex |0, |2*
wy# ulk .1 g‘: uI‘r ’1
S Wy,
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vhore |u»."| “ Kh i used, § =« r . ro ! 1,:000,7s The inoquality

lm.”l 5 Kh’ fer. '0 + l.ooo,r followa from
-~ \ /2 el ~ ~
&y = [0y(0,) + 0L - T, - Faa ¢ o)

which, in turn, follows from (Bb,c) and (C1) - (C3). The O(¢) terms

arc uniform in iy and T,? are the last r_  components of |{,f,

0
resp, .hen

240

*h
ﬂb.‘lx%o:h-v—oo.

et #(m-1) denote the least g-algebra measuring all
Uppeeoyly ) Ond let F(m-1,t) be the least o-algebra measuring, in

A
addition, u\jeee,u oo Lot iy wv and recall m = T/A, Thus

F(m-1,v-1) measures all the u, except for the last one vu_ .
Now,

E(exp 1Ay | F(m-1))

v-1l

= E{exp 12} }i‘. u..l.?(n-l)]:(up ﬂ;\l.‘,l F(n-1,v-1))

» A*B.

)’
B = E[ (101“\1-' © Se—— + :.')l".-l.'-l)]

rererasserreasn.



'CIV' " "'“quv' E

8ince ¥ u.v| v(n.!'v.l)] « 0, and
| 2
bhl'-l. - Ktﬁh ] Z( ‘X'-u.v) l.V(._l’v.l)] : b

ve have

A b _
(1--:;-.—-'-).%')55‘(1_%‘.!1’".'

vhere “-v is a real number

240

Moy = K8y ¢ K max [Aju |77,

m,v

AB = A(1 -

AN 5

Wl * M,

Continuing the procedure gives

h

)

AN ¢+ KB
mn

h

l.o




k1

Olb -
AR ~ (1 ..)1‘.‘,1_':)" Wy
| ;'
A .
Ml = 2 M,

8imilarly,

MA v

-
£ Y Au - L = M
s e flo- 2

e L oY
M = £ LM, .
blr-l"

r
Pt [ s X K8 , -0, Thus, va have proved (All). Q.E.D.
fer.r +1 n,
0
Lemma D5, A Cl) - (C5). let [y (t)) be the 1§
Lemna 3, Assume (C1) - (C3) __.f“()l e linear
interpolation of (’k]‘ The multidimensionil distributions of f(t)

converge to those of x‘ an A—0,

The proof s well-known and is omitted,

Proof of Theorem 1, By Lemmas 1 - 3, the finite dimensional

distributions of gh(t) converge to those of x , at points of
continuity of the latter (for t $ T). (9) follows from Lemma 2, Q.E.D.

Proof of Corollary 1., If F(¢) were continuous on C[0,T] = 0,
then the Corollary follows from Theorem 1, p. 581 [5], since our

Theorem 1 assurcs that the conditions of the cited theorem hold.
Corollary 2, p. 579 of [5] asserts that the distribution of P(3(+))




L2

converges to that of P(x (¢)) for all F(e) econtinuous w,p,l, on
C(0,T) 1ir (a) the multidimensional distributions of lh(t) converge
to those of Xy and (b) the measures by BFO woakly vompact, (a)

is implied by Theorem |, and (b) 18 alzo . since, by the proof of

Theorem 1, p, 581, (), weak compactiess of (un) is implied by (9) (or,
equivalently, by equicontinuity of x, on [0,T) with probehility
arbitrarily close to 1), The last statement of the corollary follows from

the previous part of the corollary, Q.E.D.

Proof of Theorem 2, Ry (CC) the last two terms of (10a) are

equal, and so are the last two terms of (10b). By nypothesis,

v(x.’“) is uniformly bounded w,p.l.,, and T N T 1s continuous w.p.l,

(relative to u). x  4s continuous in t w.p.l. Hence, X, is
continuous w,p.l. on C[0,T], hence, 9(;,“) is. Thus, by
Corollary 1, e
h
ot (me)) ~Eo(x,)
as h -0,

A similar conclusion for the convergence of the integral tem
follows from the continuity of

t
g k(x .)dl

in




b3

Proof of T™h orem 8%, Define 3'('-.’) « inf "lhb £ nt], Then
e x

by (11),

P(nel,h) 2 (l-i'(n,h))nu ¢ P(n,n)

» “0 ‘ P(n,h)(l-ﬂo).

1 - P(n,h) s u.uo)“ (A1h)

vhich implieca

/ 1"4?’(1“) -0
T
& T-+w uniformly in x,h, PFurthermore,

E -
R, ] k(17(s))das -0
‘llth

B (0" (1)) - 9(t"(x,))) =0

& T e wiformly in x,h. (Al3) and Theorem 2 imply the Theorem,
Q.E.D. :
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